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This paper presents a new frequency-domain method to analyze physically non-linear
structural systems having non-proportional damping. Single- and multi-degree-of-freedom
(d.o.f.) systems subjected to time-dependent excitations are considered. A procedure to
consider initial conditions, required by the methodology described, is discussed. The
algorithm described here employs a time-segmented procedure in modal co-ordinates in the
frequency domain; solution in each time-segment being obtained by an iterative process. The
proposed methodology is validated by three examples. The procedure presented here can be
employed as well to analyze structural systems with viscous and hysteretic damping or else
with frequency-dependent damping properties.
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1. INTRODUCTION

Dynamic non-linear analyses are usually performed in the time-domain by direct
integration of the equations of motion in physical co-ordinates. The so-called mode
superposition method has also been used as an alternative time-domain procedure, where
modal co-ordinates are employed instead of the physical ones. However, when the
structural system has hysteretic damping or frequency-dependent damping characteristics,
the analysis in frequency domain is more adequate.

In recent years, a number of procedures have been presented for non-linear analyses
in the frequency domain. Kawamoto [1] proposed a hybrid time-frequency method
where the original system is replaced by a pseudo-linear system; the equations of motion
being solved in the frequency domain, and the non-linear contribution being dealt with
in the time-domain through the pseudo-force method. Aprile et al. [2] generalized
0022-460X/00/430457#19 $35.00/0 ( 2000 Academic Press
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Kawamoto's procedure making it possible to consider hysteretic and frequency-dependent
damping.

Itoh [3] presented a frequency-domain procedure to obtain responses of systems with
non-proportional damping where he makes use of a complex modal basis to uncouple the
equations of motion. The "nal algorithm employs only real algebra, and does not take
advantage of some characteristics of the classical mode superposition method.

Chen and Taylor [4] proposed uncoupling the dynamic equilibrium equations for
systems with non-proportional damping, through a basis composed by Ritz vectors instead
of the complex modal basis. Chang and Mohraz [5] used the mode superposition method
to deal with physically non-linear structural systems with non-proportional damping; they
established an iterative procedure through Taylor series expansions.

Claret and Venancio-Filho [6] considered non-proportional damping via the
pseudo-force concept. The pseudo-force formulation led to an iterative process, which was
solved in the time-domain via Duhamel integral. The convergence of the iterative process
was quite good. Jangid and Datta [7] employed the same procedure as Claret and
Venancio-Filho; however the iterative process was performed in the frequency domain.

The present work is concerned with a discussion aiming at generalizing existing
frequency-domain procedures for non-linear structural systems with non-proportional
damping. A new and quite general methodology to consider physical non-linearities is
presented, making it possible to consider structural damping. The solution of either linear
or non-linear single-degree-of-freedom (s.d.o.f.) systems is obtained by the matrix
formulation presented by Venancio-Filho and Claret [8], namely the implicit Fourier
transform (ImFT). It is important to mention that concerning the non-linear formulation
initial conditions are considered as described by Ferreira et al. [9] and that the procedure
presented in that paper is herein generalized to consider multi-degree-of-freedom systems.
In order to obtain the time-history of the response for non-linear s.d.o.f. or m.d.o.f. systems
with non-proportional damping, a time segmentation technique is employed over modal
co-ordinates. The coe$cients responsible for coupling are considered as pseudo-forces, thus
an iterative procedure naturally arises.

2. LINEAR SINGLE-DEGREE-OF-FREEDOM SYSTEMS

The equation of motion for an s.d.o.f. system with viscous damping is given by

mvK (t)#cvR (t)#kv (t)"p (t), (1)

where m, c and k are, respectively, mass, damping and sti!ness coe$cients, and v is the mass
displacement.

The time-domain solution of equation (1) can be obtained through the following inverse
discrete Fourier transform (iDFT) formula:

v(t
n
)"

DuN
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N~1
+

m/0
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m
)P (uN

m
)emn(*(2n@N)) (2)

where P (uN
m
) is the discrete Fourier transform (DFT) of p (t), i.e.,

P (uN
m
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i is the complex unit, N is the number of sampling points, t
n
"nDt, are the discrete times,

Dt"¹
p
/N is the time interval in which the sampling time ¹

p
is subdivided. ¹

p
is also

referred to as extended period and uN
m
"mDuN are the discrete frequencies, where

DuN "2p/¹
p
. H(uN

m
) is the complex frequency response function (CFRF) at the discrete

frequency uN
m
, i.e.,
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conjugate[(H(uN
N~m

))] for m'N/2.

(4)

It is important to notice that the spectrum of v (t),

<(uN
m
)"H(uN

m
)P (uN

m
), (5)

is available to the engineer (see equation (2)) when the standard DFT algorithm described
above is employed.

The linear viscous damping model (see equation (1)) is currently adopted because it leads
to a convenient solution of the equation of motion and it can be adjusted to yield reasonable
results as long as damping is not too high. However, its use in structural dynamics is at least
conceptually incorrect as viscous-damping modelling leads to frequency-dependent energy
dissipation for harmonic motions, i.e., the damped system behaves in a way which lacks
experimental support. Thus, in what concerns structural damping, whenever possible one
should use a model whose energy dissipation is not frequency dependent. Such a model is
the so-called hysteretic damping model, for which the CFRF for the s.d.o.f. system can be
expressed as

H (uN
m
)"

1

!uN 2
m
m#k (1#ij)

, (6)

j"2m being the hysteretic damping factor and m being the damping ratio [10].
The discrete time-history of displacement obtained by the DFT procedure as shown by

equations (2) and (3), can be alternatively obtained by a unique matrix operation

v"
1

N
ep, (7)

where v is a vector describing the mass displacement time-history whose entries v
n
are equal

to v(t
n
), p is the discrete loading vector whose entries are p

n
"p (t

n
). As all operations

required to perform the DFT and the iDFT are implicitly considered by matrix e, it is called
the implicit Fourier transform matrix. The following matrix product obtains the entries of
matrix e:

e"EHE*, (8)

where E* carries out in matrix form the DFT operation indicated by equation (3), i.e.,
P"DtE*p, P being a vector whose entries are P

n
"P (uN

m
). E* entries are given by

E*
m`1,n`1

"e~mn(*(2n@N)) (9)

E carries out in matrix form the iDFT operation indicated by equation (2), i.e.,
v"(DuN /2n)EHP, H being a diagonal matrix whose entries are H

m`1,m`1
"H (uN

m
).
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E entries are given by

E
m`1,n`1

"emn(*(2n@N)), (10)

i.e., E
m`1,n`1

"conj(E*
m`1,n`1

).
The discrete time-history of velocities can be computed as indicated by Ferreira [11] and

Ferreira et al. [9].
Now, one of the advantages of using the implicit Fourier transform (ImFT) algorithm

described above (see equation (7)) appears at full extent. If the number of Fourier
coe$cients is large enough to yield accurate time response for v as expressed by equation (7)
and the extended period is large enough, causality should be obeyed, i.e., a discrete value of
p(t

j
) should not contribute to a discrete value of v (t

i
) whenever j'i. Thus, if one is

interested only in the "rst S terms of the response, only the coe$cients e
ij

such that i)S,
i'j, need to be considered. Such a reduced e (S]S) lower triangular matrix can be
generated by the complete H (N]N) matrix and by reduced E (S]N) and E* (N]S)
matrices. The causality property described above will prove to be very useful in the scheme
for non-linear analysis presented in this paper where a lower triangular e (S]S) matrix
together with reduced (S]1) p and v vectors are considered rather than a complete
e (N]N) matrix and complete (N]1) p and v vectors. One must also notice that the
e
ij

coe$cients have a number of properties as described by Ferreira [11] which if taken into
consideration lead to substantial savings in the assemblage of the e matrix. An important
characteristic of matrix e which must be observed is that e is a Toeplitz matrix, i.e.,
e
i`k,j`k

"e
i,j

). Thus, only its "rst column has to be calculated.

3. INITIAL CONDITIONS

Aiming at performing a time-segmented non-linear analysis, where displacement and
velocity at the end of one segment are used as initial conditions for the subsequent segment,
a procedure to include initial displacement and velocity is discussed next.

The time response due to an initial displacement v
0

can be obtained by adding to
a constant in time displacement v

0
, the e!ect of a force !f

0
:

v"
1

N
e(!f

0
1)#v

0
1, (11)

where 1 is a vector of order (S]1), whose elements are equal to unity and f
0

is the static
force on the spring due to the displacement v

0
. If the analysis is linear elastic, then f

0
"k

0
v
0
,

if it is non-linear, f
0
must be obtained from the load ] displacement diagram for the spring.

The response corresponding to an initial velocity vR
0

is the same as that due to an impulse
of intensity mvR

0
, which can be obtained from

v (t)"mvR
0
h (t), (12)

where h (t) is the unit-impulse response function, i.e., it is the response of the s.d.o.f. system to
a unit impulse. From equation (12) one can obtain the discrete time-history displacement
vector [9,11] corresponding to an initial velocity vR

0
,

v"
1

NDt
mvR

0
ed, (13)

where d is a vector of order (S]1) whose "rst element is unity and all others are null.
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When both initial displacement and velocity are considered, one "nally arrives at the
following expression, which can be used in a time-segmented analysis:

v"
1

N
eAp!f

0
1#

mvR
0

Dt
dB#v

0
1. (14)

4. SINGLE-DEGREE-OF-FREEDOM NON-LINEAR SYSTEMS

Consider a non-linear s.d.o.f. system, whose spring force}de#ection relation follows the
bilinear law shown in Figure 1.

During the time-marching process, the equilibrium equation may correspond either to
segment A}B or B}C. When the time-marching process starts, the analysis is carried out
within segment A}B with null initial conditions. The equation of motion then
reads

mvK#cvR#k
0
v"p (15)

and the time response can be obtained from

v"
1

N
ep (16)

For segment B}C, the equation of motion reads [12]

mvK
n
#cvR

n
#k

1
v
n
"p

n
!f

0
, (17)

where v
n
"v!v

0
, v is the total displacement within segment B}C at time t, and v

0
is the

displacement at the end of segment A}B. f
0

( f
0
"k

0
v
0
) is the external reaction force

resulting from a static analysis when the mass is subjected to the displacement v
0
. Figure 1

shows that

k
1
"k

0
!Dk. (18)

Considering equations (17) and (18) the following expression can be derived:

mvK
n
#cvR

n
#k

0
v
n
"p

n
#Dkv

n
!f

0
. (19)
Figure 1. Bilinear force-de#ection diagram.
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m, c and k
0
on the left hand side (l.h.s.) of equation (19) are the same as for the linear segment

A}B (see equation (15)) and the term Dkv
n
which corresponds to the spring sti!ness change,

is in fact considered as a pseudo-force, as it now appears on the right hand side (r.h.s.) of
equation (19). The iterative procedure employed to solve equation (19) can be described by
equation (20), which represents the equation of motion for iteration k:

mvK (k)
n
#cvR (k)

n
#k

0
v(k)
n
"p

n
#Dkv(k~1)

n
!f

0
. (20)

The displacement time-history can then be obtained from

v(k)"v(k)
n
#v

0
1, v(k)

n
"

1

N
eApn!f

0
1#

mvR
0

Dt
d#Dkv(k~)

n B , (21)

where the contribution of initial velocity has also been included. It should be noticed that
the implicit Fourier transform matrix e is that of segment A}B, i.e., it need not be
recalculated.

The iterative process is stopped when

K
v(k)
max

!v(k~1)
max

v(k)
max

K)e, (22)

e being a given tolerance.
Figure 2 illustrates a typical bilinear force}de#ection diagram and the mass displacement

time-history, corresponding to a segmented analysis with "ve segments: O}A; A}B; B}C,
C}D, D}. The end of the analysis shown in Figure 2 is on the "fth segment where the mass
oscillates until it stops. The initial conditions are shown in Table 1.

5. MULTI-DEGREE-OF-FREEDOM LINEAR SYSTEMS

The equation of motion for a viscously damped m.d.o.f. system can be written as

mvK (t)#cv5 (t)#kv(t)"p(t), (23)

where m, c and k are, respectively, mass, damping and sti!ness matrices.
Equation (23) can be transformed to modal co-ordinates Y(t) as

IYG (t)#CY0 (t)#KY(t)&P (t), (24)
Figure 2. Bilinear force}de#ection diagram and time-history of the mass displacement.



TABLE 1

Segmentation analysis sequence and initial conditions for each segment
indicated in Figure 2

Segment Initial conditions

O}A f
0
"0 v

0
"0 vR

0
"0

A}B f
0
"f

A
v
0
"v

A
vR
0
"vR

A
B}C f

0
"f

B
v
0
"v

B
vR
0
"vR

B
C}D f

0
"f

C
v
0
"v

C
vR
0
"vR

C
D} f

0
"f

D
v
0
"v

D
vR
0
"vR

D
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where v (t)"UY(t) and P (t)"UTp(t). U is the modal matrix normalized with respect to the
mass matrix, thus I in equation (24) is a diagonal unitary mass matrix, K is diagonal and
C will be diagonal if c is proportional, i.e., c"a

0
m#a

1
k.

When the damping matrix c is proportional the system of equations given by equation
(24) is uncoupled and the solution for a modal co-ordinate Y

j
, when initial conditions are

null, can be obtained from

Y
j
"

1

N
e
j
P
j
, (25)

where

e
j
"EH

j
E*. (26)

H
j
is a diagonal matrix whose diagonal coe$cients (H

j
)
m`1,m`1

are given by

H
j
(uN

m
)"1/[!uN 2

m
#iuN

m
C

jj
#(1#ij)u2

j
] (27)

and u
j

is the jth natural frequency obtained from the solution of the equation
[k!u2m]v"0.

The time response for the physical co-ordinates can be computed from

v(t)"UY(t), (28)

6. NON-LINEAR MULTI-DEGREE-OF-FREEDOM SYSTEMS WITH PROPORTIONAL
DAMPING

The procedure followed for non-linear m.d.o.f. systems is similar to that explained
previously for s.d.o.f. systems. The solution process starts on the "rst segment (linear) for
which the procedure indicated by equations (23)}(28) holds.

When the non-linear term responsible for the change in sti!ness is considered as
pseudo-force, as before, an iterative process arises, and the equilibrium equation for the kth
iteration reads

mvK (k)
n
#cv5 (k)

n
#k

0
v(k)
n
"p

n
#Dkv(k~1)

n
!f

0
, (29)

where k
0

is the sti!ness matrix corresponding to the "rst segment. As the matrices on the
l.h.s. of equation (29) are the same as those shown in equation (23), with k

0
instead of k, the

same modal matrix of the linear segment ("rst segment) can be used to uncouple equations
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(29). However, the eigenvalues of the "rst segment are not orthogonal to the incremental
matrix Dk, consequently the modal incremental matrix K

N
"UTDkU will have coupled

modal coe$cients.
Thus, the modal displacement time-history corresponding to equation (29) can be found

through the following iterative expressions:

Y(k)
j
"Y(k)

nj
#>

0j
1,

Y(k)
nj
"

1

N
e
jAPnj

!F
0j

1#
>Q
j

Dt
d#

NGL
+
p/1

K
Njp

Y(k~1)
np B (30)

where F
0j

is the modal reaction which appears on the generalized mass j when the
mechanical system is subjected to a static displacement "eld corresponding to the initial
displacement of the current segment and >Q

0j
is the corresponding initial modal velocity.

In order to further clarify how F
0j

is evaluated in a numerical algorithm such as that
described in this paper, consider a m.d.o.f. system having only one non-linear spring whose
displacement}de#ection curve is shown in Figure 2. Concerning the discussion that follows
it is instructive to label segments O}A, B}C and D}E as linear and to label segments A}B
and C}D as non-linear.

In order to compute the time response for the C}D segment, the displacement and
velocities of point C of segment B}C are taken as initial conditions for segment C}D. Thus,
F
0j

is given by

F
0j
"Fa

j
#K

0j
D>

0j
(31)

where K
0j

is the jth diagonal coe$cient of the modal sti!ness matrix K
0
"UTk

0
U and D>

0j
is the incremental modal displacement of the generalized mass j at the end of the segment
B}C. K

0j
D>

0j
is an incremental modal static linear elastic force on the generalized mass

j and Fa
j

represents static force contributions due to previous segments.
As the procedure is segmented, the next step consists in "nding the response for segment

D}E. The "nal conditions of segment C}D are now the initial conditions for segment D}E.
In this case, F

0+
for segment D}E reads

F
0j
"Fa

j
#uT

j
k
1
v
n

(32)

where u
+
is the jth eigenvector and v

n
is the incremental displacement vector of the masses at

the end of the non-linear segment C}D, expressed in physical co-ordinates. Therefore,
uT
j
k
1
v
n
is the incremental modal static force at the generalized mass j that corresponds to

the end of the segment C}D, and Fa
j

is equal to F
0j

given by equation (31). Thus, the
following general expression can be written:

Fa"+
a

[K
0j

D>
0j

]a#+
b

[uTk
1
v
n
]b, (33)

where the summations account for contributions of previous steps, both linear
(+

a
[K

0j
D>

0j
]a) and non-linear (+

b
[uTk

1
v
n
]b).

7. NON-LINEAR MULTI-DEGREE-OF-FREEDOM SYSTEMS WITH
NON-PROPORTIONAL DAMPING

When the damping is non-proportional the damping modal matrix is not diagonal, thus
the analysis in modal co-ordinates is coupled. In this case, the pseudo-force concept is also
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used and the coe$cients of the modal damping matrix responsible for mode coupling are
transferred to the r.h.s. of the modal system of equations. In order to accomplish this task
the modal damping matrix C"UTcU must be written as

C"C
D
#C

F
, (34)

where C
D

is a diagonal matrix whose coe$cients are given by

C
Dnn

"uT
n
cu

n
"2m

n
u

n
(35)

and C
F
is a matrix whose diagonal coe$cients are null with the non-diagonal terms given by

C
Fnp

"uT
n
cu

p
(C

Fnp
"0 if n"p). (36)

The term which accounts for pseudo-forces due to non-proportional damping can be
obtained by following a procedure similar to that developed when non-linearities were
considered. When non-linear behaviour is considered together with non-proportional
damping, the following equation for the kth iteration can be written

Y(k)
j
"Y(k)

nj
#>

0j
1,

Y(k)
nj
"

1

N
e
j APnj

!F
0j

1#
>Q
j

Dt
d#

NGL
+

p/1

K
Njp

Y(k~1)
np

!

NGL
+

p/1

C
Fjp

Y0 (k~1)
np B (37)

8. NUMERICAL EXAMPLES

8.1. PRELIMINARY REMARKS

In order to carry out a numerical analysis one has a priori to make a decision about the
values of DFT parameters which lead to accurate numerical results. Some guidelines may
be recommended; however, an optimal choice of such parameters can only be achieved if
one has experience in the problem being analyzed.

8.1.1. Extended period ¹
p

The period either for linear analyses or for each segment of non-linear analysis must be
large enough to prevent a periodic behaviour of the time-history of displacements. As e is
a lower triangular matrix, the extended period ¹

p
is not related to time duration of external

loads, rather it must be such that the "rst column of matrix e is accurately computed (note
that e is a Toeplitz matrix). In fact, ¹

p
depends only on m, c and k, and must be such that

g(¹
p
) is small, g (t) being the unit impulse response function which for an s.d.o.f. system is

given by

g(t)"
1

uJ1!m2
e~umt sin(utJ1!m2). (38)

Given a tolerance a, ¹
p

can be estimated from

e~mTpu(10a (39)
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or

¹
p
'a

ln(10)

mu
(40)

where m is the damping ratio and u is the natural frequency.
The authors have obtained accurate results for a"2 and recommend 2)a)4.

8.1.2. Number of sampling points N

As is usual in DFT analysis the number of sampling points must prevent aliasing [10,13],
i.e., the sampling interval Dt must be small enough so that

1

2Dt
'f

N
, (41)

where f
N

is the Nyquist frequency. The sampling interval is Dt"¹
p
/(N!1).

8.1.3. ¹he parameter S

This parameter only indicates the number of time points at which the response is to be
computed. As such it has no in#uence either on accuracy or on stability of the algorithm.
However, S has great in#uence on the cost of the analysis mainly for non-linear structural
systems. S being too small introduces unnecessary segments, whereas large values of S lead
to unnecessary computations of the response beyond a segment.

8.1.4. ¹olerance e of the pseudo-force iterative process

In all examples analyzed here the authors have adopted e"1%.

8.1.5. ¹ime-domain analyses

In order to verify the accuracy of the frequency-domain (FD) method discussed
here, time-domain analyses were also carried out for each of the following examples.
The time-domain approach is based on the Newmark scheme, as presented by Weaver
and Johnston [14], with the parameters c and b taken as c"1/2 and b"1/6. In fact,
this choice leads to the linear acceleration method. Except when mentioned, the
time-domain analyses employ the same time-step adopted in the frequency-domain
analyses. The CPU time of the time-domain analyses were lower than those of the frequency
domain analyses. For the applications presented here, this is not an important parameter as
no analysis took more than 2 s (overall computer time) in a micro-computer Pentium II
450 MHz. CPU computer time is not a parameter to be concerned with, as time- and
frequency-domain approaches are not meant to be competitive, rather they are
complementary to one another [10]. There are many dynamic problems which can be
solved either by time- or frequency-domain procedures; in this case, the cheaper one should
be chosen. However, time-domain approaches do not apply when the dynamic system
properties are frequency dependent: in this case one is left with no other choice but to use
frequency-domain methods. One such case where time-domain approaches cannot be
applied is discussed here in application 2, where hysteretic damping was considered for the
structure.
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8.2. EXAMPLE 1

The s.d.o.f. system shown in Figure 3(a) has mass equal to 17)5 t and a viscous damping
coe$cient equal to 21 kN s/m. The spring sti!ness coe$cient is bilinear as shown in
Figure 3(b). The natural frequency is 7)07 rad/s and the damping ratio is 8)5%.

The following parameters, related to the implicit Fourier transform algorithm and to the
iterative pseudo-force process, were adopted: N"2000, Dt"0)0125, S"120 and e"1%.
For the time-domain analysis, Dt"0)012.

In the non-linear analysis, one may have to change from the current segment to the
subsequent one (see Figure 2) at discrete time values lower than SDt (S"120), in which case
the remaining terms of the time response history are not considered.

In the "rst analysis the system is subjected to the loading time-history shown in Figure 4.
Linear and non-linear ImFT and Newmark responses depicted in Figure 5 agree quite well.

Concerning the non-linear analysis, the spring works linearly under tension at the initial
stage, reaches later a non-linear phase, subsequently enters into a compressive linear phase,
returns to the non-linear phase and "nally oscillates linearly until motion stops. Thus, at
rest, the spring will have a residual strain (negative in the present analysis).

In order to check the robustness of the ImFT approach, another analysis was carried out
where the s.d.o.f. system shown in Figure 3 was excited by a base motion whose input
acceleration, depicted in Figure 6, corresponds to the "rst 4 s of the &&El Centro'' earthquake.

The time-domain and ImFT results shown in Figure 7 agree quite well. For these
analyses, Dt"0)0125 s. It should be observed that in this analysis the system crosses many
times the non-linear threshold.

8.3. EXAMPLE 2

The shear building depicted in Figure 8 is submitted to &&El Centro'' earthquake base
acceleration. The top-#oor movement is partially restricted by a discrete viscous damper
whose damping constant c is equal to 3)5 MNs/m. This shear building has been analyzed
previously by Clough and Penzien [10], who computed the eigenvalues of the
correspondent undamped problem.

Three di!erent situations were simulated as described next. In the "rst analysis, the
discrete viscous damper was removed and Rayleigh damping was considered for the
structure [10], i.e., c"a

0
m#a

1
k. As this analysis is linear, and the damping matrix is
Figure 3. Single-degree-of-freedom shear building: (a) properties; (b) bilinear sti!ness coe$cient.



Figure 4. Loading time-history: example 1, "rst analysis.

Figure 5. ImFT and Newmark time responses for the s.d.o.f. system subjected to the load depicted in Figure 4:
}} } }, linear analysis, ImFT; s, linear analysis, Newmark;**, non-linear analysis, ImFT; n, non-linear analysis,
Newmark.
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Figure 6. Base acceleration of &&El Centro'' earthquake.

Figure 7. Non-linear ImFT and Newmark time responses for the s.d.o.f. system subjected to &&El Centro''
earthquake base acceleration:**, ImFT; n, Newmark.
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Figure 8. Three-degree-of-freedom shear building.

Figure 9. Displacement time-history of the top #oor of the shear building depicted in Figure 8 for proportional
Rayleigh damping: **, ImFT; s, Newmark.
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proportional, the analysis is not iterative. Time-histories of the top #oor obtained with
Newmark and ImFT algorithms, depicted in Figure 9, agree quite well.

Figure 10 shows the time-history of the top-#oor displacement of the shear building as
shown in Figure 8, i.e., the discrete damper is included in this analysis. Thus, the damping
matrix c is non-proportional, the modal damping matrix being given by

C"

2)18 !1)65 0)55
!1)65 1)89 !0)47

0)55 !0)47 0)96



Figure 10. Displacement time-history of the top #oor of the shear building depicted in Figure 8 for non-
proportional damping: **, ImFT; s, Newmark.
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The modal system is coupled, as the o!-diagonal coe$cients of the C matrix shown above
are not null. The pseudo-force method required four iterations to achieve convergence.
Results obtained with the frequency-domain approach (ImFT), for N"1000, and with the
Newmark scheme are identical.

A last analysis concerning this three-storey shear building was carried out where the
discrete damper was included and hysteretic rather than Rayleigh damping was considered
for the structure, the damping ratio being m"5%. The time-history of the top-#oor
displacement due to the ImFT approach, using Rayleigh and hysteretic damping for the
structure, is shown in Figure 11. Results, once again, agree quite well. For all analyses
corresponding to this example, Dt"0)0125 s.

8.4. EXAMPLE 3

The 2 d.o.f. system shown in Figure 12(a) is a simpli"ed model of the structure of
a nuclear reactor containment. The masses of the foundation m

f
and of the structure m

s
are,

respectively 108 and 3]107 kg. The sti!ness coe$cient of the structure is
k
4
"6]1010 N/m. The soil behaviour is non-linear, as shown by the load}de#ection curve

depicted in Figure 12(b). The system is submitted to a horizontal impact load, whose
time-history is depicted in Figure 13. The damping coe$cient of the soil computed
according to Richart et al. [15] is 3)79]109 Ns/m. Natural frequencies corresponding to
modes 1 and 2 are, respectively, equal to 31)26 and 56)33 rad/s and the corresponding
damping ratios are, respectively, equal to 0)2824 and 0)1797.



Figure 11. Displacement time-history, obtained with the ImFT, of the top #oor of the shear building depicted in
Figure 8 for non-proportional damping:**, Rayleigh damping for the structure; h, hysteretic damping for the
structure.

Figure 12. Two-degree-of-freedom nuclear reactor model: (a) 2 d.o.f. system, (b) bilinear sti!ness coe$cient of
the soil.
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In this example the following parameters related to the implicit Fourier transform
algorithm and to the iterative pseudo-force process were adopted: N"1024, Dt"0)01 s,
S"60 and e"1%.

The time-histories of the foundation displacement corresponding to Newmark
(Dt"0)005 s) and ImFT algorithms are depicted in Figure 14, considering the soil
behaviour to be linear or non-linear. It must be highlighted that in the ImFT non-linear
model the iterative expression (37) has been employed, i.e., the mechanical system is



Figure 13. Impact over mass m
s
for the nuclear reactor model.

Figure 14. Foundation displacement time-history for the nuclear reactor model: } } } }, linear analysis, ImFT;
s, linear analysis, Newmark; **, non-linear analysis, ImFT; n, non-linear analysis, Newmark.
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non-linear with non-proportional damping. Results of time-domain and ImFT algorithms
agree quite well, giving residual displacements quite close. The overall computer time for
the ImFT procedure was equal to 1 s and, for the Newmark scheme, was lower than 1 s.

9. CONCLUSIONS

This work presented a new robust frequency-domain formulation, which can be used
to "nd time responses of either linear or non-linear structural systems, having
non-proportional damping characteristics.

Time-history of displacement for 1 d.o.f. systems was obtained via the matrix formulation
of the discrete Fourier transform, denoted here by implicit Fourier transform (ImFT). One
important property of the ImFT matrix e, the causality property, has been discussed here. It
was shown that one need not consider the (N]N) terms of e when only the "rst S (S(N)
terms of the time response history are required, i.e., a reduced lower triangular e (S]S)
implicit discrete Fourier matrix can be considered, leading to substantial computer time
savings.

In the procedure presented here for linear m.d.o.f. systems the mode superposition
method was employed. The "nal system is uncoupled and the same frequency domain
algorithm used for the 1 d.o.f. system could be employed. When the system is non-linear,
with non-proportional damping, the system of equations in modal co-ordinates is not
uncoupled any more. In this case, terms responsible for coupling are transferred to the r.h.s.
of the system of equations, being considered as pseudo-forces. An iterative procedure arises,
in which the l.h.s. of the "nal system of equations is uncoupled, and thus the modal matrix
needs to be computed only once.

The pseudo-force method together with the correct consideration of initial conditions for
m.d.o.f. systems led to a correct modelling in the frequency domain of the three examples
discussed here; ImFT results were quite close to those arising from a time-domain
procedure based on the Newmark scheme.

It is important to notice that when CPU computer time is concerned, time-domain
approaches (e.g., Newmark, Wilson h, central di!erences, etc. [14, 16]) are cheaper in many
applications. However, time- and frequency-domain approaches are not meant to be
competitive, rather they are complementary to one another. Time-domain procedures do
not apply when dynamic properties have to be de"ned in the frequency-domain, as
illustrated by the third analysis of the second example (see Figure 11) where hysteretic
damping was considered for the structure. Naturally, for the range of problems to which
time- and frequency-domain approaches apply equally, one will choose the cheapest one. In
fact, computer time is critical when the number of the d.o.f. is too large, otherwise computer
cost is not relevant.

As a "nal remark, it should be observed that ImFT computational costs could be
substantially reduced if modal truncation procedures are employed.
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